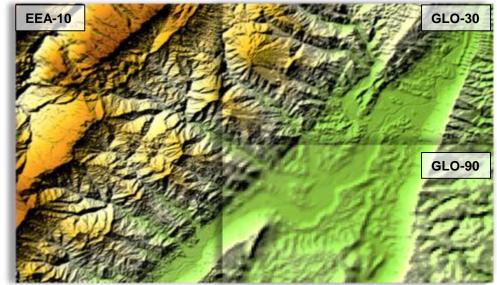


USGS Update on Landsat Next

National Geospatial Advisory Committee


December 9, 2020

Timothy Newman

Program Coordinator National Land Imaging Program U.S. Geological Survey

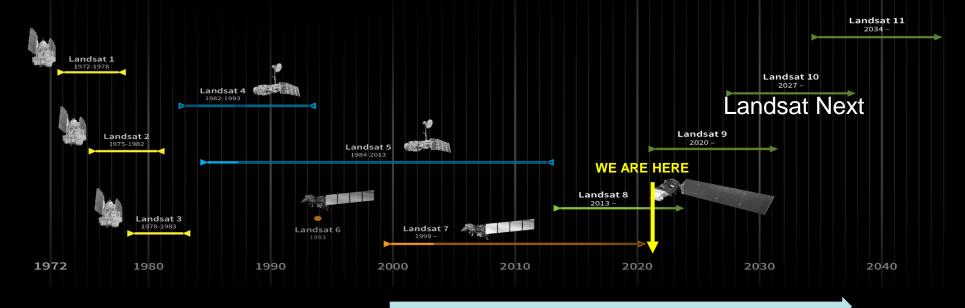
Copernicus DEM

- ➤ The EC and ESA announced at the beginning of November that their global 30-meter Digital Elevation Model (DEM) GLO-30 would now be open to the public
 - □ Decision followed ongoing discussions with USGS and EROS highlighting the value of multilateral partnerships
- ➤ This global dataset is more consistent and of higher quality than other freely available global DEMs
 - □ Expected to provide higher confidence in products
 - □ GLO-30 DEM can also help improve current alignment of Sentinel-2 and Landsat imagery, and improve interoperability

Copernicus DEM Instances EEA-10 (left), GLO-30 (upper right) and GLO-90 (lower right) (Courtesy Copernicus)

Landsat Collection 2

➤ Landsat Collection 2 publicly released last week


- □ Cloud-hosted, using Amazon Web Services
- □ Can be accessed and downloaded similarly to Collection 1
- □ Still free to the public
- □ Collection 1 to be maintained in parallel for 1 year
- Improved Geometric Accuracy using Landsat 8 and Europe's Sentinel-2 Global Reference Image (GRI)
- Improved Digital Elevation Model (DEM)
- Improved Radiometric Calibration for Landsat 5 and Landsat 8
- Global Level-2 Surface Reflectance/Temperature Data and Atmospheric Auxiliary Products
- Consistent Quality Assessment Bands
- Updated and Consistent Metadata Files
- Cloud Optimized File Format

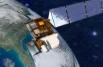
The official USGS Landsat Missions Web Site Collection 2 documentation is located at:

https://usgs.gov/land-resources/nli/landsat/landsat-collection-2

BUILDING ON THE LANDSAT LEGACY

NASA-USGS Interagency Partnership

- NASA: Space Segment and Launch
- USGS: Operations & Data Processing/Distribution
- Sustainable Land Imaging (SLI) is a partnership between DOI/USGS and NASA to maintain a sustainable program for spaceborne land imaging
 - □ Landsat-9 development is on track to meet a FY 2021 launch date
 - □ USGS documented user requirements across Federal agencies; NASA conducted technology investigations to reduce cost and risk in future missions
 - Joint SLI Architecture Study Team (AST) completed its final report; AST delivered a set of viable architecture concepts for the next mission providing a basis for formulating future acquisition strategies
 - » NASA and USGS Leadership working to develop details and options as part of their FY 2022 budget requests


Landsat Next Recent Developments

- > NASA and USGS addressing Pre-Phase A studies for Landsat Next mission
 - □ Pre-Phase A activities anticipated to conclude in 2021
- > First steps are to refine spectral bands, their spatial resolution, and radiometric quality
- > Priorities for band definition include:
 - □ Continuity with heritage Landsat bands
 - □ Synergy with European Copernicus Sentinel-2 / Land Surface Temperature Missions
 - □ Support for new, high-priority emerging applications
 - Improved atmospheric correction and surface temperature retrieval
- > Landsat Next Request for Information (RFI)
 - □ RFI posted 13 October 2020: Landsat Next RFI
 - □ RFI sought feedback on mission science requirements, instrumentation solutions, architecture approaches

Side Note: Congressional Research Service released a report entitled "Landsat 9 and the Future of Sustainable Land Imaging Program" on October 5, 2020

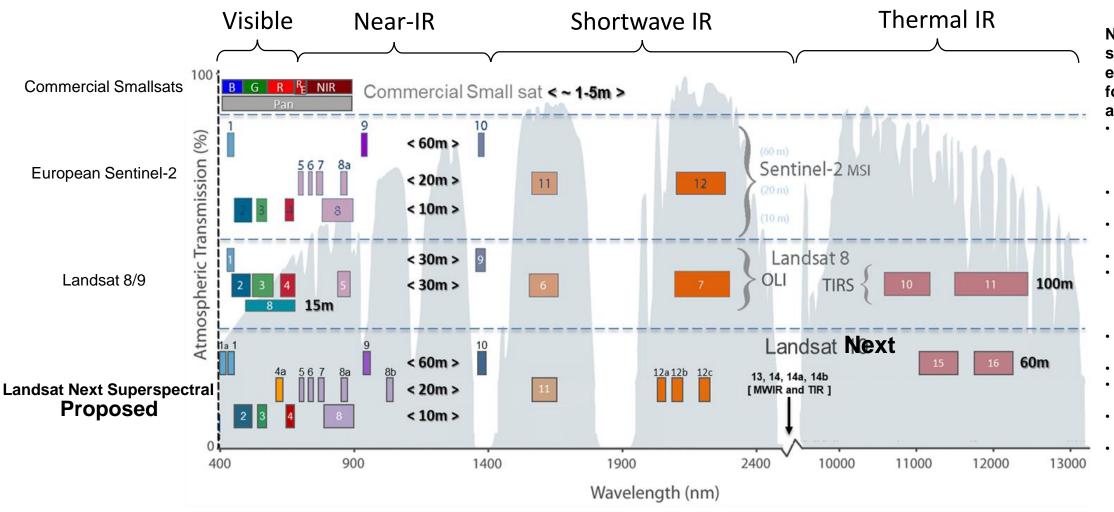
RFI Proposed Landsat Next capabilities

	Landsat 8/9	Landsat Next Concept		
Spectral bands	9 VSWIR, 2 TIR	20 VSWIR, 5 TIR		
Spatial resolution	15m panchromatic, 30m VSWIR, 120m TIR 10/20/30/60m VSWIR, 60m TIR			
Temporal revisit	16 days	<= 16 days		
		OLI heritage (when		
SNR (VSWIR)	OLI heritage	aggregated to 30m)		
NEdT (TIR, @300K)	<0.4K required	<0.2K required		
Radiometric	<5% at-sensor radiance error,	<5% at-sensor radiance error,		
Accuracy (VSWIR)	<3% reflectance <3% reflectance			
Radiometric	<2% radiance error @ 300K (1 <1% radiance error @ 300K			
Accuracy (TIR)	sigma) sigma)			

RFI Proposed Landsat Next architecture options

		Single-Platform
	Constellation Observatory	Observatory
Global land revisit	<=16 days	<=16 days
Orbit	Sun-synch, altitude TBD	Sun-synch, altitude TBD
	1 (VSWIR+TIR) or 2	1 (VSWIR+TIR) or 2
Instruments per platform	(VSWIR, TIR)	(VSWIR, TIR)
Platforms	Notionally 3 to 5	1
Swath-width per platform	40-80km	>=185km
	Constellation Class B, via	
	redundant Class C or lower	Class B
Risk Approach	platforms	

RFI Draft SLI "Superspectral" Requirements


➤RFI draft "superspectral" spectral bands

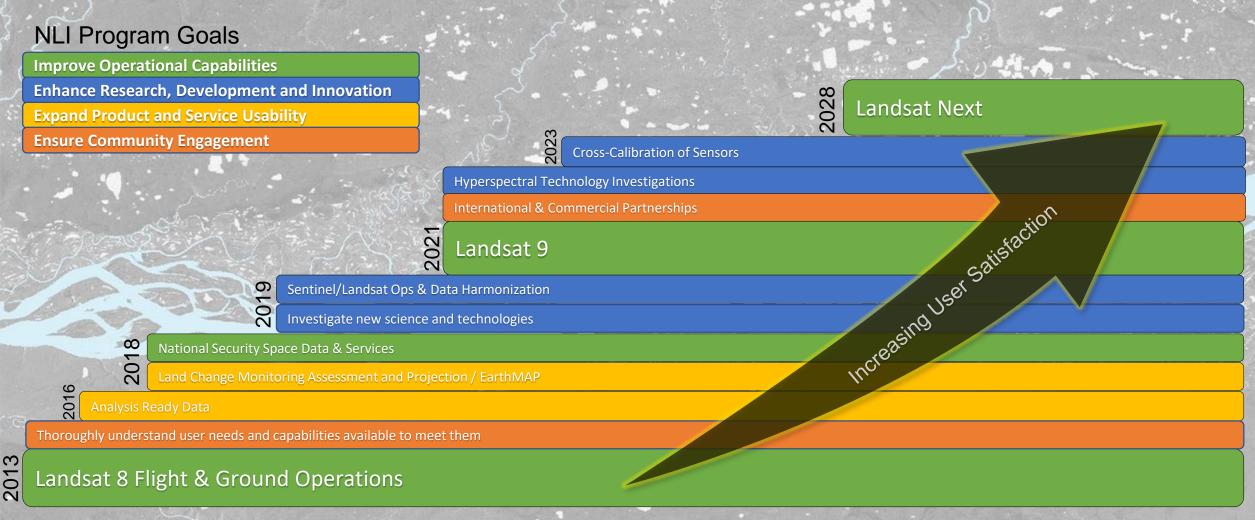
- □ Included Sentinel-2 bands
- Added narrow bands for aquatic and cryosphere
- □ Shifted SWIR bands for crop residue
- Shifted/narrowed TIR bands for temperature/emissivity
- Coastal aerosol at 30m for aquatic and mineral applications
- ➤ Radiometric quality intended to match Landsat 8 OLI when aggregated to 30m

	Band name	Ground Sample Distance (m)	Center wavelength (nm)	Band width (nm)	Rationale
1	Violet	60	410	20	Improved aerosol retrieval; CDOM from inland/coastal water
2	Coastal Aerosol	30	443	20	Landsat
3	Blue	10	490	65	Landsat
4	Green	10	560	35	Landsat
5	Orange	20	620	20	Phycocyanin detection for Harmful Algal Blooms
6	Red 1	20	650	20	Phycocyanin, chlorophyll
7	Red 2	10	665	30	Landsat
8	Red Edge 1	20	705	15	LAI, Chlorophyll, plant stress (S2)
9	Red Edge 2	20	740	15	LAI, Chlorophyll, plant stress (S2)
10	NIR Broad	10	842	115	10m NDVI (S2)
11	NIR1	20	865	20	Continuity (note – S2 narrower than L8)
12	Water vapor	60	945	20	Improved atmospheric correction for LST, SR (S2)
13	Liquid Water	20	985	20	Liquid water, surface water state
14	Snow/Ice 1	20	1035	20	Snow grain size for water resources
15	Snow/Ice 2	20	1090	20	Ice absorption, snow grain size
16	Cirrus	60	1375	30	Landsat
17	SWIR 1	20	1610	90	Landsat
18	SWIR 2a	20	2100	30	Subdivided for cellulose/crop residue measurement (Landsat)
19	SWIR 2b	20	2210	40	Subdivided for cellulose/crop residue measurement (Landsat/ASTER)
20	SWIR 2c	20	2260	40	Subdivided for cellulose/crop residue measurement (Landsat/ASTER)
21	TIR 1	60	8300	250	Mineral and surface composition mapping (ASTER)
22	TIR 2	60	8600	350	Emissivity separation, volcanos (SO2) (MODIS/ASTER)
23	TIR 3	60	9100	350	Mineral and surface composition mapping (ASTER)
24	TIR 4	60	11300	550	Surface temperature (Landsat), carbonates
25	TIR 5	60	12000	550	Surface temperature, snow grain size (Landsat)
		- 00	12000	000	canada tomporatoro, onon gram orza (zanadat)

Spectral Band Comparisons

Among Commercial Smallsats, European Sentinel-2, Landsat 8/9 & Proposed Superspectral Landsat Next

New Landsat Next spectral bands enable/improve the following applications:


- Improved aerosol retrieval; Colored dissolved organic matter from inland/coastal water
- Phycocyanin detection for HABs
- Leaf Area Index, Chlorophyll, plant stress
- Water quality
- Improved atmospheric correction for temperature, surface reflectance
- Snow grain size for water resources
- Cellulose/crop residue
- Active fire, volcanos, fire radiative power
- Mineral and surface composition mapping
- Emissivity separation, volcanic SO2

Ideas for 2021 LAG Tasks

- ➤ What are the programmatic, technical and policy considerations that NLI should be addressing as it considers strategies for improved cross-calibration and interoperability with national, international and commercial datasets to augment Landsat observations?
- ➤ In the "Landsat in the Cloud Era," what innovations should NLI consider a priority in providing data and information products? Improving ARD? Improving exploitation infrastructure? Ohers?
- > What are some near-term technical challenges (like applying data cubes in forecasting) and how can NLI best position itself to meet them?
- > An updated assessment on the economic value of Landsat data—with specific case studies--would be timely given the development of Landsat Next.
- > As a global survey tool, how could Landsat data be used to inform the scientific community in regards to future pandemic surveillance, monitoring and response?
- > How can the integrated collection of satellite, in situ and airborne data impact climate change research?

National Land Imaging (NLI) Program Future Directions

Leveraging the diversity of Earth Observations to meet the Diverse Needs of Science & Operational Users

